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Abstract

The advancement of wireless communication technology has made possible the consideration

of inter-vehicle communication as a foundation for developing decentralized advanced trans-

portation information systems that would function as a sort of “internet on the road”. In this

paper, we discuss the reliability of inter-vehicle communication in a traffic stream, dependent

on the distribution of equipped vehicles. With the assumption that information propagation is

instantaneous compared to vehicle movements, the reliability is measured by the probability of

success for information to travel beyond a location; stochastic models are presented for both

uniform and general traffic streams. In the models, the traffic stream is divided into a series

of cells based on the transmission range, the structure of possible most-forward-within-range

communication chains is clarified, the probabilities for information to travel to and beyond a

vehicle at a certain hop are computed regressively, and the lower bound of the absolute success

rate for information to travel beyond a point is determined. Based on the models, we examine

the performance of information propagation for different penetration rates, transmission ranges,

and traffic scenarios that include gaps and shock waves. Finally, some implications and future

extensions of this effort are discussed.

1 Introduction

Intelligent Transportation Systems (ITS) that incorporate advanced technologies have been pur-
ported to offer efficiencies in tackling traffic congestion. Among such systems are Advanced Trans-
portation Information Systems (ATIS) that broadcast such real-time traffic information as travel
times to travelers. Some systems have been actually placed successfully into operation, e.g., AD-
VANCE (Boyce et al., 1994); all rely on a centralized distributor of the information, such as a local
Transportation Management Center. The rapid advance in available information technology, espe-
cially, the development of wireless communication technologies, now makes feasible the exploration
of traffic information systems that decentralize the tasks of collecting and disseminating traffic in-
formation. A number of efforts are currently underway to investigate inter-vehicle communications
(IVC) based on mobile ad hoc networking technology as a means of developing “internet on the road”
(e.g. CarTALK 2000; FleetNet). However, to date, these efforts have focused more on the protocols
and routing algorithms for information transmissions than on the application of the technology as
the foundation for a decentralized, real-time traffic information system.
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In an effort to explore the advantages of IVC in developing ITS, researchers at the California
Institute of Telecommunications and Information Technology and the Institute of Transportation
Studies of the University of California, Irvine, have been engaged in a comprehensive research
effort aimed at the development of an autonomous, self-organizing, transportation management,
information, and control system. Called Autonet, the long-term goal of the effort is deployment
of an autonomous, self-organizing information network for effective management of interactions
among intelligently informed vehicles, roadways, stations and consumers (drivers). The Autonet
concept proposes to use vehicle-to-vehicle and vehicle-to-infrastructure communications to leverage
cooperative, vehicle-centric pervasive computing as a platform for transportation management. At
its core, Autonet can be visualized as a bundle of services supporting an arbitrary collection of
transportation management applications. These services are provided by accessing a decentralized
collection of computer systems using a variety of protocols, which in turn are implemented on any
number of physical networking architectures. Compared to centralized ATIS systems, a decentralized
system like Autonet offers some significant advantages: (1) the IVC components of the system
require no capital investment on the part of the transportation agencies, and can evolve to a full
system gradually, once a threshold market penetration is achieved; (2) both the monetary and
labor costs to build and operate the system are directly distributed to the users of the system;
(3) the system is much more resilient to disruption, particularly in the event of disasters, when
communications, management, and control are most important; (4) the system can be anchored to
the Internet as a platform for additional applications. It also poses significant challenge compared
to infrastructure-based networks: (1) the routing problem, which is already hard to solve in fixed
networks, is substantially more complicated in a mobile ad-hoc network; (2) although rapid progress
made toward higher data transmission rates based on the IEEE 802.11 standard for wireless local area
networking (WLAN) has put the promise of truly mobile computing within reach, communications
bandwidth remains a scarce resource in a mobile ad-hoc network;(3) the possibility of propagation
of malicious misinformation and access to any particular traveler’s origin-destination information
can pose a serious security problem.

Technology issues undoubtedly will play an important role in an assessment of candidate pro-
tocols for a distributed traffic information system based on IVC; however, in this paper we focus
on the feasibility analysis for an initial prototype deployment of the distributed, ad-hoc vehicular
information system, instead of ad-hoc network technology itself. Specifically, we focus on a funda-
mental issue regarding to performance of such a system; i.e., how far can information be expected to
propagate in a traffic system under certain traffic conditions, penetration rate of equipped cars, and
transmission range of wireless units? By providing some general answers to this question, we hope
to help guide specification of appropriate communication devices, routing protocols, and database
management schemes that would be required in order to have the most important information col-
lected and distributed, and to determine the range of applications for which a mobile, ad hoc traffic
information system might be effective.

In previous work, (Hartenstein et al., 2001) simulated the process of information propagation
using the cellular automaton model, presenting results on the probability that two equipped vehicles
could establish connection through IVC under different traffic conditions and transmission ranges. In
(Yang, 2003), IVC was simulated with Paramics, a microscopic traffic simulator, and the maximum
information propagation distance was evaluated against transmission range and penetration rate for
unidirectional roads, bidirectional roads, and road networks. In (Ziliaskopoulos and Zhang, 2003),
propagation of travel time information was studied in a grid road network through information
exchange between vehicles traveling in opposite directions. In this case, the primary mechanism
for information distribution is based on the flow of traffic, rather than relying on information hops
among neighboring vehicles. This type of information propagation may be particularly important in
the early stage of deployment when the penetration rate may be too low to support the “hopping”
of information along a platoon of vehicles traveling in the same direction. However, under such
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conditions, an IVC-equipped vehicle would likely have to wait for another such equipped vehicle
traveling in the opposite direction to pass within its communication range. Thus, such information
propagation may suffer from high delay and may fail if vehicles in the other direction run into a
queue.

In this paper, we are interested in information propagation through “multi-hopping” along a
platoon of vehicles. However, unlike the simulation studies of (Hartenstein et al., 2001; Yang, 2003),
we develop an analytical model of the probability that a message can travel beyond a point in a
traffic stream on a link, either uni- or bi-directional. As shown in (Briesemeister et al., 2000), it
only takes 110 ms to transmit 73 bytes with a rate at 3.6 kb/s. This means that, with an achievable
transmission rate of 1 Mb/s or with a short message about traffic conditions, information exchange
can be expected to be completed in a very short time, during which the movement of vehicles is
inconsequential. In this sense, we consider the traffic stream as static, as compared to the information
propagation, and we do not consider a dynamic communication topology (Rudack et al., 2002). That
is, at any moment, we take a “snapshot” of the traffic stream and analyze information propagation in
the vehicle network; we refer to this scenario as instantaneous information propagation. Note that,
with the instantaneity assumption, there is no distinction between information exchange between
vehicles traveling in opposite directions and that between vehicles traveling in the same direction;
i.e., either have equivalent model representations relative to information propagation. Further, since
we are interested in establishing the maximum expected performance of information propagation, we
assume that information propagates in a manner of “most forwarded within range” (MFR) (Takagi
and Kleinrock, 1984); i.e., a message is transmitted to the farthest equipped vehicle within the
transmission range. With this assumption, a vehicle at a hop can establish communication with at
most one at the next hop and at most one at the preceding hop. In this paper, notations in Table
1 are used.

The remainder of the paper is organized as follows. First, we model information propagation
for uniform traffic and analyze possible communication chains by the success rate for information
to travel beyond a point (Section 2). Then, we evaluate the performance of IVC in uniform traffic
in terms of transmission range, traffic density, and penetration rate (Section 3). In Section 4, we
present a stochastic model of information propagation in general traffic and study properties of the
model for a randomly distributed traffic stream. With the model, we study information propagation
in a traffic stream with a gap or a shock wave in Section 5. Finally, we remark on the results in the
conclusion section.

2 A stochastic model of information propagation in uniform

traffic

In this section, we consider on an infinitely long road a uniform stream of traffic, whose density is
ρ and speed v. We assume that the communication range, R, is constant for each hop. We assume
that there are n vehicles inside a transmission range R; i.e., traffic density for all lanes is ρ = n/R.
Further, we assume the penetration rate of equipped vehicles as µ (0 ≤ µ ≤ 1). Thus the probability
of a vehicle to be equipped is µ, that of a vehicle not to be equipped as ν ≡ 1−µ, and the distribution
of independent equipped cars forms Bernoulli trials (Feller, 1950, Chapter VI).

2.1 Communication chains

The performance of information propagation in a uniform traffic stream can be measured by the
success rate for information to travel beyond a point in the traffic stream. This point is determined by
the unique sequence of informed vehicles, starting from the information source, that form the set of
MFR vehicles. Such a sequence is called an MFR communication chain, or simply a communication
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chain. In a communication chain, an informed vehicle is called a node, and the connection between
two consecutive nodes a hop. The number of hops in a chain is stochastic, dependent on the
distribution of equipped vehicles in the traffic stream. In this communication chain, we denote the
information source by node 0, and any other node by the number of hops h for information to reach
it; the location of node h in the traffic stream is designated by x(h).

In uniform traffic, information is limited to travel only as far as hR within h hops. Starting
from the information source, we divide the traffic stream into a number of cells in the direction of
information propagation, with the length of each cell equal to the communication range R. Within
cell c (c = 1, · · ·), vehicle k (k = 1, · · · , n) is denoted by (c, k). So, x(d, j) > x(c, k) either when
d > c or when d = c and j > k, where x(c, k) is the position of vehicle (c, k). Under the assumption
of uniform traffic, we have x(c, n) = cR and x(c + 1, k) − x(c, k) = R. Note that the information
source is not inside cell 1.

The event that vehicle (c, k) is node h on a chain is denoted by (c, k; h), and the probability
of the event by P (c, k; h). Therefore, P (c, k; h) is equal to the probability for information to travel
to (c, k) in h hops. In order to compute P (c, k; h), we first study the properties of communication
chains within the uniform traffic stream.

Theorem 2.1 (Regulation of nodes) From the assumption of MFR and the limit of communi-
cation range, we can derive the following properties of nodes for a communication chain.

1. If vehicle (c, k) is node h (h ≥ 1), then vehicle (c, k) is equipped and no vehicles between
x(h) and x(h − 1) + R are equipped. That is, node h is the farthest equipped vehicle in the
transmission range of node h − 1.

2. There are at most two nodes in a cell.

3. If there is a node in cell c, there is at least one node in cell c − 1.

4. In cell 1, if vehicle (1, k) is the farthest equipped within the transmission range of the informa-
tion source, it gets information in one hop. That is, if vehicle (1, k) is on a communication
chain, it is node 1.

5. At hop h, a message travels at most to cell h. That is, node h of a chain is at most in cell h.
In this case, node i is in cell i for i = 1, · · · , h − 1.

6. At hop h, a message travels at least to cell [ (h+1)
2 ], where function [x] returns the smallest

integer that is bigger than or equal to x. That is, node h of a chain is at least in cell [ (h+1)
2 ].

In this case, node i is in cell [ (i+1)
2 ] for i = 1, · · · , h − 1.

In the above, if nodes h − 1 and h belong to the same cell, we then refer to hop h, from node
h − 1 to h, as an intra-cell hop, and as an inter-cell hop otherwise. If for example, vehicle (2, 2) is
the MFR in cell 2, it gets informed at hop 2 through an inter-cell hop when, e.g., (1, 2) is informed.
If, however, the MFR vehicle in cell 1 is (1, 1), vehicle (2, 2) can get informed only when (i) vehicle
(2, 1) is equipped and (ii) vehicle (3, 1) is not, taking three hops for information to reach (2, 2), with
the last hop being an intra-cell hop.

Theorem 2.2 (Regulation of hops) From MFR or Theorem 2.1, we have the following properties
for hops in a communication chain.

1. The first vehicle in a cell can not be the end of an intra-cell hop.

2. There exist no consecutive intra-cell hops.
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3. The initial hop, i.e., hop 1, is an inter-cell hop.

4. The minimum number of hops from a node in cell c (c ≥ 2) to a node in cell c+1 is one (with
an inter-cell hop), and the maximum number is three (an intra-cell hop, followed consecutively
by an inter-cell hop and an intra-cell hop). Information propagation from a node in cell c
(c ≥ 2) to a node in cell c+1 by two hops can occur as an intra-cell hop followed by a inter-cell
hop or vice versa.

5. The minimum number of hops from node 0 to a node in cell c (c ≥ 1) is c (with all inter-cell
hops), and the maximum number is 2c− 1 via a pattern of an initial inter-cell hop followed by
c − 1 consecutive combinations of inter-cell hop plus intra-cell hop.

From property 4 of Theorem 2.2, if we select any particular node in each cell from a commu-
nication chain (the information source and the last node have to be selected), the communication
chain can be broken into sub-chains at these nodes that comprise one of four types of sub-chains
having one or more hops: (i) an inter-cell hop, (ii) an inter-cell hop followed by an intra-cell hop,
(iii) an intra-cell hop followed by an inter-cell hop, (iv) an intra-cell hop followed by an inter-cell
hop and an intra-cell hop.

Theorem 2.3 (Properties of sub-chains) We have the following properties of sub-chains.

1. An arbitrary communication chain cannot be constructed from only one type of sub-chain.

2. Any communication chain can be broken into a unique sequence of types i and ii sub-chains.

3. An arbitrary communication chain cannot be constructed from combinations of any other two
sub-chains.

4. Types i and ii sub-chains are independent for the structure of a communication chain since any
two communication chains spanning in c cells are different in structure from each other if their
last sub-chains are different. Therefore, there are 2c−1 different structures for a communication
chain spanning in c cells.

Therefore, type i sub-chain, called a one-hop jump, and type ii sub-chain, called a two-hop jump,
form the minimum basis of all possible communication chains. That is, an arbitrary communication
chain can be constructed from them, and different sequences of them form different communication
chains.

2.2 Information propagation in uniform traffic

To compute the probability for vehicle (c, k) to be node h of all possible communication chains,
P (c, k; h), we first consider the different structures a communication chain can take, determined by
the sequence of one-hop and two-hop jumps, and then consider the probability for each structure.
In addition, we define the joint probability of (c, i; h) and (c, l; h− 1) (1 ≤ l < i) by P(c, l, i; h). We
compute P (c, k; h) regressively as follows.

In cell 1, h = 1, and P (1, k; 1) equals to the probability that vehicle (1, k) is the farthest
equipped vehicle. Thus we have

P (1, k; 1) = µνn−k. (1)

Note that the probability that there is no equipped car in cell 1 is νn. In addition,

P(1, l, i; 1) = 0, (2)
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for any 1 ≤ l < i ≤ n.
For cell c, we assume that P (c, k; h) is known for k = 1, · · · , n and h = c, · · · , 2c− 1. Then, we

consider the probability for vehicle (c + 1, k) (k = 1, · · · , n) to be node h + 1 on a communication
chain. From Theorem 2.3, (c + 1, k) can belong to one of two mutually exclusive, exhaustive types
of chains; i.e., it can be the end of a one-hop jump from node h in cell c or the end of a two-hop
jump from node h − 1 in cell c.

If node (c + 1, k; h + 1) is connected to node (c, i; h) through a one-hop jump, the following
conditions have to be satisfied: (i) vehicle (c, i) is node h on the communication chain, where h can
be between c and 2c − 1; (ii) x(c + 1, k) − x(c, i) ≤ R; i.e., i can vary from k to n; (iii) vehicle
(c + 1, k) is equipped; (iv) vehicles (c + 1, k + 1) to (c + 1, i) are not equipped according to MFR;
and (v) none of vehicles (c, k) to (c, i − 1) can be node h − 1. Therefore, the probability for node
(c + 1, k; h + 1) to be connected from node h in cell c through a one-hop jump is given by

P1(c + 1, k; h + 1) =

n
∑

i=k

(

P (c, i; h) −

i−1
∑

l=k

P(c, l, i; h)

)

µνi−k, (3)

where k = 1, · · · , n; h = c, · · · , 2c − 1.
If node (c+1, k; h+1) (k = 2, · · · , n) is connected to node (c, i; h−1) through a two-hop jump,

with an intermediate node (c + 1, j; h), the following conditions have to be satisfied: (i) vehicle
(c, i) is node h − 1 on the communication chain, where h − 1 can be between c and 2c − 1; (ii)
x(c + 1, k) − x(c, i) > R; i.e., i can vary from 1 to k − 1; (iii) vehicle (c + 1, j) is equipped, where
1 ≤ j ≤ i; (iv) vehicles (c + 1, j + 1) to (c + 1, i) are not equipped according to MFR; (v) vehicle
(c + 1, k) is equipped; (vi) vehicles (c + 1, k + 1) to (c + 2, j) are not equipped according to MFR;
and (vii) none of vehicles (c, j) to (c, i − 1) can be node h − 2. Therefore, the probability for node
(c + 1, k; h + 1) to be connected from node h − 1 in cell c through a two-hop jump is given by

P2(c + 1, k; h + 1) =

k−1
∑

i=1

i
∑

j=1



P (c, i; h − 1) −

i−1
∑

l=j

P(c, l, i; h− 1)



µνi−jµνn−k+j

=

k−1
∑

i=1

i
∑

j=1



P (c, i; h − 1) −

i−1
∑

l=j

P(c, l, i; h− 1)



µ2νn+i−k, (4)

where k = 2, · · · , n; h − 1 = c, · · · , 2c − 1. Similar to the analysis above, we can find the joint
probability for (c + 1, k; h + 1) and (c + 1, j; h) (k = 2, · · · , n, j = 1, · · · , k − 1)

P(c + 1, j, k; h + 1) =
k−1
∑

i=j



P (c, i; h − 1) −
i−1
∑

l=j

P(c, l, i; h− 1)



µ2νn+i−k. (5)

Note that, when k = 1, we only have (3) or P2(c + 1, 1; h + 1) = 0, and, when h = 2c, we
only have (4) or P1(c + 1, k; 2c + 1) = 0 since P (c, i; 2c) does not exist. Since a one-hop jump and
two-hop jump are mutually exclusive and exhaustive in forming communication chains, we obtain
P (c + 1, k; h) for k = 1, · · · , n and h = c + 1, · · · , 2c + 1 as

P (c + 1, k; h + 1) = P1(c + 1, k; h + 1) + P2(c + 1, k; h + 1), (6)

where P1 and P2 are computed respectively from (3) and (4). For the purpose of generalization, we
define P (c, k; h) = 0 when h < c or h > 2c − 1.

In the case when a communication chain consists only of one-hop jumps; i.e., when we omit
cases with intra-cell communications, we have a model for restricted information propagation

P (h + 1, k; h + 1) =

n
∑

i=k

P (h, i; h)µνi−k, (7)
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from which we can see that, for this restricted case, P (h + 1, k; h + 1) actually is a convolution of
P (h, k; h) with a geometric binomial distribution. This results in a negative binomial distribution
or Pascal distribution (Feller, 1950, Section VI.8), which can be written as

P (h, k; h) =

(

h + n − k − 1
n − k

)

µhνn−k. (8)

Note that, since this model does not consider communication chains with two-hop jumps, it is not
complete and cannot be used in applications.

In general, when considering both one-hop and two-hop jumps, we cannot obtain P (c, k; h) in
closed form. To obtain the aggregate performance measurement of an IVC system, we first define
the cumulative probability, or the success rate for information to travel beyond vehicle (c, k) at h
hops, by

S(c, k; h) =

(h,n)
∑

(d,i)=(c,k)

P (d, i; h),

where (h+1)
2 ≤ c ≤ h.

The absolute success rate for information to travel beyond (c, k), regardless of the number of
hops, can not be smaller than S(c, k; h) for any h. Therefore, we have a lower bound of the absolute
success rate as

s(c, k) = max
h

S(c, k; h). (9)

Note that, theoretically, the domain of h is [1,∞). However, in computation, we can obtain the
maximum for sufficiently large h.

The algorithm for computing all performance measurements in IVC is given in Table 2. Al-
though there is a subtle difference between the actual success rate and its lower bound (s(1, 1) is
accurate, and the difference for other locations is expected not to be significant), knowing the lower
bound is useful in practical applications. In the results that follow, we use s(c, k) as a measure-
ment of the performance of information propagation. Further, we denote the maximum x(c, k) for
which s(c, k) = s as the s information front, and the distance between the s information front and
information source as the s information progress.

3 Analysis of information propagation in uniform traffic

In this section, we employ the relationships developed in the previous section to evaluate the per-
formance of IVC in uniform traffic in terms of transmission range, traffic density, and penetration
rate.

3.1 Information propagation success rate for different hops

In Figure 1, S(c, k; h) and s(c, k) is plotted for first ten hops for µ = 0.05 and n = 100; here the
x-axis is defined in terms of (c − 1)n + k segments, where (c − 1)n + n = cn represents the limiting
value for the farthest vehicle (counted from the information source) that could possibly receive the
information in h hops. The results demonstrate that, as expected, the success rate for information
to travel a distance equal to a particular number of cells generally decreases with the number of hops
involved; an exception to this is noted for distances within the vicinity of the maximum distance
for a given number of hops. For example, the success rate for information reach beyond vehicle
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(c, k) = 200 at four hops is above 90% while with five hops it is below 90%; however, the success
rate for information reach beyond vehicle (c, k) = 300 at four hops is about 77% while with five hops
it remains only slightly below 90%. From the figure, we can also see that s(c, k) is non-increasing
and piece-wise.

3.2 Minimum number of vehicles for information propagation

In this subsection, we compute the minimum number of vehicles in a cell that is required, for a given
penetration rate, for information to travel a number of hops with a desired success rate. For hop 1,

for example, we can compute the required minimum number of vehicles, n, exactly by n ≥ ln(1−s)
ln ν

,
from S(1, 1; 1) = 1 − νn ≥ s.

The minimum numbers of vehicles required to achieve 90% success rate for first ten hops
under different penetration rates are listed in Table 3. From the table, we can draw the following
conclusions. First, for the same penetration rate, the minimum number of required vehicles increases
with hops. This is simply because a communication chain with more nodes is harder to form than
with fewer. Second, for the same number of hops, the minimum number of required vehicles decreases
with the penetration rate, as expected.

For illustration, the minimum numbers of vehicles required to achieve success rates from 98%
to 80% for a penetration rate µ = 10% are listed in Table 4 for the first 10 hops. From this table,
we can see that the minimum number of required vehicles decreases with the desired success rates,
as expected.

In addition to the cases described in the two tables above, we can compute the required mini-
mum number of vehicles in a cell for any given success rate and penetration rate from (6). Since the
number of vehicles in a cell is equal to the traffic density times the transmission range, the model (6)
can be used to determine the requirement for different traffic conditions and transmission ranges,
given a penetration rate and desired success rate.

3.3 Information propagation for different traffic densities and transmis-

sion ranges

In this subsection, the performance of information propagation, measured by the lower bound of
absolute success rate s(c, k), is analyzed as a function of traffic density and transmission range.

As an example, we consider free flow on a four-lane road with traffic density at ρ = 14
veh/km/lane. We assume uniform spacing of vehicles in any lane, and that vehicles in adjacent
lanes are staggered such that the distance between two nearest vehicles is about 18 m 1, or that
the distance between two nearest vehicles in the same lane is about 71 m. Therefore, the number
of vehicles within a transmission range R (unit: km) is given by n = 56R. Under these conditions,
the success rate for distances up to 10 km is shown in Figure 2, for R =1.0, 0.5, 0.2, 0.1 km. This
figure tells us that, as expected, the larger transmission range, the farther information propagates.
For R = 1.0 km, information can travel beyond 5.7 km with 90% success rate.

For the same traffic system as above but with lower density at ρ = 5 veh/km/lane, the number
of vehicles inside a transmission range is n = 20R. In this traffic stream, the distance between two
nearest vehicle on the same lane is 200 m. Success rates for the same set of transmission ranges as in
the preceding example are shown in Figure 3. For transmission range of 1 km, information can only
travel for about 0.3 km with 80% success rate. In these two examples, traffic is relatively sparse. In
cases where traffic density per lane is close to the jam density, say about 150 veh/km/lane, as one
can estimate from Tables 3 and 4 that information can travel significantly farther.

1This amounts to the most ideal spacing for transmission success and, for purposes of information exchange, is
equivalent to assuming a traffic density at ρ = 56 veh/km/lane for a single-lane highway
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4 A stochastic model of instantaneous information propaga-

tion in general traffic

In this section, we extend the model to the case of instantaneous information propagation in general
traffic.

4.1 A stochastic model for information propagation in general traffic

Under conditions of uniform traffic in the previous examples, the length of a cell was identically
equal to the communication range R, and the number of vehicles within each cell was constant Rρ.
The situation for the case of general (non-uniform) traffic can be represented as shown in Figure 4,
in which the position of each vehicle in the traffic stream is identified by a (non-unique) number that
represents its cell membership. In this traffic stream, the information source is at car 0, cars labeled
with a 1 are in cell 1, and so on. For this traffic stream, cells can be determined as follows. First,
within R from the information source, we find the farthest car, whose position is the end of cell 1.
Then, within R from the farthest car in cell 1, we find the farthest car in cell 2. We continue this
process for the whole traffic stream. Due to the non-uniform distribution of vehicles, as shown in
the figure, the length of a cell is less than or equal to the transmission range R. When determining
cells, we can also obtain the number of vehicles in cell c and denote it by nc. Assuming that no two
vehicles have the same location (even on a multi-lane road), we then can order vehicles in cell c from
1 (the closest) to nc (the farthest) and refer to the kth vehicle in cell c by (c, k). If the location of
vehicle (c, k) is x(c, k), x(c1, k1) 6= x(c2, k2) if (c1, k1) 6= (c2, k2).

Further, for a vehicle (c, k) (c > 1), we can find vehicle (c − 1, k) such that k is the minimum
satisfying

∣

∣x(c, k) − x(c − 1, k)
∣

∣ ≤ R. (10)

That is, (c − 1, k) is the farthest, upstream (in the direction of information propagation) car inside
the transmission range of (c, k). Similarly, we can find the farthest, downstream car (c + 1, k) such
that k is the maximum satisfying

∣

∣x(c + 1, k) − x(c, k)
∣

∣ ≤ R, (11)

where c ≥ 1. Note that, in uniform traffic, k = k, and k = k.
We continue to define P (c, k; h) as the probability for information to reach car (c, k) at hop h,

under MFR. Since the properties of communication chains are the same as those in uniform traffic,
we can derive the stochastic model using the same approach as in Subsection 2.2. For the first hop,
when h = c = 1, we still have a geometric distribution, P (1, k; 1) = µνn1−k, for k = 1, · · · , n1, and
all joint probabilities are zero.

In a regressive manner, we assume that P (c, k; h) is known for k = 1, · · · , nc and h = c, · · · , 2c−1
and then derive a recursive formula for P (c + 1, k; h) for k = 1, · · · , nc+1 and h = c + 1, · · · , 2c + 1
as follows.

If node (c + 1, k; h + 1) is connected to node (c, i; h) through a one-hop jump, the following
conditions have to be satisfied: (i) vehicle (c, i) is node h on the communication chain, where h can
be between c and 2c − 1; (ii) x(c + 1, k) − x(c, i) ≤ R; i.e., i can vary from k to nc; (iii) vehicle
(c + 1, k) is equipped; (iv) vehicles (c + 1, k + 1) to (c + 1, i) are not equipped according to MFR;
and (v) none of vehicles (c, k) to (c, i − 1) can be node h − 1. Therefore, the probability for node
(c + 1, k; h + 1) to be connected from node h in cell c through a one-hop jump is given by

P1(c + 1, k; h + 1) =

nc
∑

i=k



P (c, i; h) −

i−1
∑

l=k

P(c, l, i; h)



µνi−k, (12)
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where k = 1, · · · , nc+1; h = c, · · · , 2c − 1.
If node (c + 1, k; h + 1) (k = 2, · · · , nc+1) is connected to node (c, i; h − 1) through a two-

hop jump, with an intermediate node (c + 1, j; h), the following conditions have to be satisfied: (i)
vehicle (c, i) is node h − 1 on the communication chain, where h − 1 can be between c and 2c − 1;
(ii) x(c + 1, k)− x(c, i) > R; i.e., i can vary from 1 to k− 1; (iii) vehicle (c + 1, j) is equipped, where
1 ≤ j ≤ i; (iv) vehicles (c + 1, j + 1) to (c + 1, i) are not equipped according to MFR; (v) vehicle
(c + 1, k) is equipped; (vi) vehicles (c + 1, k + 1) to (c + 2, j) are not equipped according to MFR;
and (vii) none of vehicles (c, j) to (c, i − 1) can be node h − 2. Therefore, the probability for node
(c + 1, k; h + 1) to be connected from node h − 1 in cell c through a two-hop jump is given by

P2(c + 1, k; h + 1) =

k−1
∑

i=1

i
∑

j=1



P (c, i; h − 1) −
i−1
∑

l=j

P(c, l, i; h− 1)



µνi−jµνnc+1−k+j

=

k−1
∑

i=1

i
∑

j=1



P (c, i; h − 1) −

i−1
∑

l=j

P(c, l, i; h− 1)



µ2νi−j+nc+1−k+j , (13)

where k = 2, · · · , nc+1; h − 1 = c, · · · , 2c − 1. Similarly, we can update the joint probability for
(c + 1, k; h + 1) and (c + 1, j; h) (k = 2, · · · , nc+1, j = 1, · · · , k − 1)

P(c + 1, j, k; h + 1) =

k−1
∑

i=j



P (c, i; h− 1) −

i−1
∑

l=j

P(c, l, i; h− 1)



µ2νi−j+nc+1−k+j . (14)

We then obtain P (c + 1, k; h) for k = 1, · · · , nc+1 and h = c + 1, · · · , 2c + 1,

P (c + 1, k; h + 1) = P1(c + 1, k; h + 1) + P2(c + 1, k; h + 1), (15)

where P1 and P2 are computed respectively from (12) and (13).

We define P (c, k; h) as 0 for h < c or h > 2c − 1. Then, S(c, k; h) =
∑(h,n)

(d,i)=(c,k) P (d, i; h) and

S(c, k; h) = 0 when h < c. That is, S(c, k; h) is the probability that information can travel beyond
(c, k) at h hops. We then define (the lower bound of) the absolute success rate for information to
travel to or beyond (c, k), regardless of the number of hops, as s(c, k) = maxh S(c, k; h).

4.2 Properties of the model for random traffic streams

For illustration, we consider a traffic stream with a length equal to fifteen times of transmission
range R. Inside each range segment, the number of vehicles is assumed to be a uniform random
variable between 75 and 125, and vehicle positions are also assumed to be uniformly distributed.
Note that the actual length of a cell is usually smaller than the transmission range, and that the
number of vehicles inside each cell is different from that randomly generated.

The success rates of first ten hops in the first ten cells with respect to vehicle number are shown
in Figure 5 for the traffic stream above and for a penetration rate µ = 5%. In the figure, the curve
for the first hop is the same as for uniform traffic, but those for later hops are not as smooth due to
the non-uniform distribution of vehicles, as characterized by the discrepancies both between k and
k, and between k and k. Figure 6 shows the success rates with respect to vehicle position; these
curves are even less smooth. In both figures, the dotted envelope curves are the lower bounds of
the absolute success rates. The non-smoothness is expected to increase for less regular (i.e., higher
variance) distributions of traffic and/or sparser traffic.
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5 Examples for instantaneous information propagation in gen-

eral traffic

5.1 Information propagation through a gap

In this subsection, we consider two uniform traffic streams at ρ = 56 veh/km with a gap of g km in
between. For the purpose of simplification, we assume that one stream ranges from −∞ to 0, and
the other from g to ∞ and set the penetration rate as µ = 10% and transmission range as R = 1
km. Note that the conditions are similar to those in Figure 2.

The success rates of information propagation for g = 0.4 km for different locations of information
source are shown in Figure 7. The figure shows that the success rates drop significantly upstream of
the gap; the magnitude of the drops for different locations of the information source are comparable.
When the information source is at x = 0, we observe that the success rate at the first hop is much
smaller than that of the other cases, since there are just three fifths vehicles in the first cell.

For different sizes of a gap ranging from 0 to 1 km, Figure 8 describes the 90% information
progress for different locations of information source, ranging from -9 km to 1 km in increments of 0.5
km. From the figure, the following can be observed. First, as expected, information can propagate
to its full distance of about 5.71 km at a 90% confidence when the source is to the downstream
of the gap, or when there is no gap. Second, this progress decreases to 5.66 when the information
source is at −7km and the gap size is of 0.1 km. This is due to the fact that the gap in cell 8 affects
the success rate at hop 8, which contributes to the absolute success rate in cell 6, where success rate
reaches 90% at 5.66 km. We can see that, when the information source is further upstream from
the gap, the 90% progress will not be affected. Third, information progress for different locations
of information source is a non-increasing function of gap size. Fourth, the progress first decreases
when the gap is closer to the information and then rebounds when it is even closer. In addition,
we observe some local oscillations, e.g., for gap size of 0.1 km when information source is between
-6 km and -4 km. These phenomena suggest that the effect of a gap on information propagation is
quite nonlinear and should be treated specifically.

5.2 Information propagation through a shock wave

In this subsection, we consider information propagation on an infinitely long road within a stream
of traffic subjected to a shock wave. It is generally accepted that, for uninterrupted traffic flow,
there is a density-speed relationship, v = V (ρ) (Hall et al., 1986). In this example, we assume the
so-called triangular fundamental diagram (Munjal et al., 1971; Newell, 1993),

V (ρ) =

{

vf , 0 ≤ ρ ≤ ρc;
ρc

ρj−ρc

ρj−ρ

ρ
vf , ρc < ρ ≤ ρj ,

(16)

for conditions in which vf=104 km/h is the free flow speed, ρj=150 veh/km/lane the jam density,
and ρc = 0.2ρj=30 veh/km/lane the critical density where flow-rate, q = ρv, attains its maximum,
i.e. the capacity.

Based on the triangular diagram, (16), we examine information propagation on a unidirectional
road of two homogeneous lanes of traffic. We assume that initially we have capacity flow with ρ

−
= 30

veh/km/lane for traffic upstream to x = 0 and congested flow ρ+ = 40 veh/km/lane for downstream
traffic. From the fundamental diagram, we then have the corresponding speeds at v

−
= 104 km/h

and v+ = 97 km/h. Under these conditions, a shock wave forms and travels backward at speed
vs = −26 km/h. Further, we assume that µ = 10% and R = 1 km. If initially information is carried
by a vehicle at x0 < 0, the vehicle will cross the shock wave at time tc = |x0|/(v

−
− vs).
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In Figure 9, we show the success rates of information propagation in both forward and backward
directions for four instants of time: t0 = 0, t1 = 2.3 min, t2 = 4.6 min, and t3=9.9 min. The
corresponding locations of information source are −10 km, −6 km, −2 km, and 6.5 km, and the
locations of shock wave are 0, −1 km, −2 km, and −4.3 km. Note that the information source meets
the shock wave at t2. Then at these four time instants, we take a snapshot of the traffic stream
and compute the lower bound of the absolute success rate s(c, k) for both forward and backward
information propagation. From the four curves, we can see that the slope of the forward branches
at t0 and t1 becomes smaller after meeting shock wave. This is as expected since the downstream
of the shock wave has higher density. In the backward branches at t3, the slope becomes larger
upstream of the shock.

In Figure 10, we show the 95% information front in both forward and backward directions. In
this figure, the curve for information source is almost a straight line owing to the slight difference in
traffic conditions on both sides of the shock wave. However, we can see the dramatic change in both
forward and backward information front. In the forward information propagation, the curve of 95%
information progress first keeps a constant distance with the information source, and the distance
is about 4.0 km, which is the information progress in the upstream (sparser) traffic. Then at about
2.0 min, the profile meets the shock wave, and the downstream (denser) traffic starts to contribute
to the forward information propagation. From then on, the curve moves forward much faster than
the information source. Then, at 4.6 min, the source crosses the shock wave, and the denser traffic
is the sole contributor to forward information propagation, and, for the rest of the time, the curve
maintains a constant distance, 27.1 km, from the source. Thus we can see that the small difference
in traffic density has a huge influence on information propagation.

The backward information progress curve follows a similar pattern in its distance relative to
the source, but the change is more gradual. In addition, the backward curve crosses the shock wave
at 13.0 min, and the message is not able to pass the shock wave after 13.0 min. Note that, at 13.0
min, the source is at 11.6 km, the backward 95% information front is at -5.6 km, and their distance
is smaller than the information progress in the denser traffic.

6 Discussion

In this paper, we analyzed information propagation in a traffic stream via inter-vehicle commu-
nication, which is assumed to be instantaneous compared to vehicle movements. We proposed a
stochastic model for computing the success rate for information to travel beyond a location, for
both uniform and general traffic streams. In this model, a traffic stream is divided into a number
of cells, and the structure of possible MFR communication chains is clarified. The probability for
information to travel to and beyond a vehicle at a certain hop is computed regressively, and the
lower bound of the absolute success rate for information to travel beyond a point is defined. Then,
based on stochastic modeling, we presented examples of the expected performance of information
propagation with respect to different traffic conditions, penetration rates, and transmission ranges.

Although we consider different conditions and measurements for information propagation, the
results in this paper are consistent in magnitude with those in (Hartenstein et al., 2001; Yang, 2003).
For example, the success rates in Figures 2 and 3 match well with the probabilities for two equipped
vehicles to establish connection found in (Hartenstein et al., 2001, Figures 1 and 2). In addition,
our result is consistent with the finding in (Yang, 2003, Figure 3.10c) that 7 km is the maximum
information propagation distance. However, unlike these previous studies, the model developed in
this paper is analytical and can thus be applied to general conditions.

Study results indicate that information propagation can be quite extensive under high density
(congested) conditions. The study also indicates that, when the penetration rate is too low, the
instantaneous information propagation is not achievable, and information propagation may only
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be achieved by two-directional information propagation, with the penalty of significant delay, as
discussed in (Ziliaskopoulos and Zhang, 2003; Yang, 2003).

The results of this study serve to better understand how well information may propagate
through IVC under certain conditions, and to help determine properties of communication devices
(in terms of communication range) that potentially could be used to achieve certain performance
of such systems. In addition, the models developed in this study can well be extended to help to
determine the distance between consecutive road-side stations, deployed as a supplement to the IVC
system, to relay information to vehicles in order to achieve better success rates. Another extension
to this work involves developing models for information propagation in dynamically changing traffic
streams. We believe that such a problem can be tackled in a similar fashion since, compared to
other mobile ad hoc networks (Perkins, 2000), the topology change caused by traffic dynamics is
relatively small. It would also be desirable to develop an information propagation model coupled
with a traffic flow model, such as the Lighthill-Whitham-Richards model (Lighthill and Whitham,
1955; Richards, 1956) and consider information propagation for different road networks.

In this study, we ignored the communication routing algorithms that would be essential for
practical ATIS applications. To pursue practically efficient information propagation, specific rout-
ing algorithms need to be developed that consider traffic conditions and each vehicle’s position,
link, and origin-destination. Yet another practical issue concerns the assumption that the success of
transmission is 100% within the transmission range, performance not generally realizable. However,
we believe that the results demonstrate the feasibility of taking advantage of better network connec-
tion through inter-vehicle communication in congested traffic to lead to an “internet-on-the-road”
that could help make daily stressful driving a more productive journey.
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R transmission range
ρ traffic density
µ penetration rate of equipped vehicles, ν = 1 − µ
(c, k) vehicle k in cell c
x(c, k) position of vehicle (c, k)
nc the number of vehicles in cell c
k (c − 1, k) is the farthest, upstream (in the direction of information propagation) car

inside the transmission range of (c, k)

k (c + 1, k) is the farthest, downstream (in the direction of information propagation) car
inside the transmission range of (c, k)

(c, k; h) the event that vehicle (c, k) is node h of a communication chain
P (c, k; h) the probability for information to travel to vehicle (c, k) in h hops
P(c, l, i; h) the joint probability of (c, i; h) and (c, l; h− 1)
P1(c + 1, k; h + 1) the probability for node (c + 1, k; h + 1) to be connected from node h in cell c

through a one-hop jump
P2(c + 1, k; h + 1) the probability for node (c + 1, k; h + 1) to be connected from node h − 1 in cell c

through a two-hop jump
S(c, k; h) the success rate for information to travel beyond vehicle (c, k) at h hops
s(c, k) the lower bound of the absolute success rate for information to travel

beyond vehicle (c, k)

Table 1: Notations

Initialize P (1, k; 1) and P(1, l, i; 1)
for c = 2, 3, · · ·

Compute P1(c + 1, k; h + 1)
Compute P2(c + 1, k; h + 1)
Compute P(c + 1, j, k; h + 1)
Update P (c + 1, k; h + 1) = P1(c + 1, k; h + 1) + P2(c + 1, k; h + 1)

Compute S(c, k; h)
Compute s(c, k)

Table 2: The algorithm for computing performance measurements in IVC

n h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9 h=10
µ=0.02 114 193 223 243 259 271 281 290 298 304
µ=0.05 45 76 88 96 102 107 111 114 117 120
µ=0.1 22 37 43 47 50 52 54 56 57 58
µ=0.2 11 17 20 22 23 25 25 26 27 28
µ=0.3 7 11 13 14 15 15 16 16 17 17

Table 3: Minimum number of vehicles to achieve success rate 90% at different hops for different
penetration rates

15



0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c,k)

S
(c

,k
;h

) 
an

d 
s(

c,
k)

s(c,k) 

h=1 2 3 4 5 6 7 8 9 10 S(c,k;h) 

Figure 1: Plots of S(c, k; h) for µ = 0.05 and n = 100

n h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9 h=10
s=0.98 38 55 61 65 68 71 73 74 76 77
s=0.95 29 45 51 55 58 60 62 64 65 67
s=0.9 22 37 43 47 50 52 54 56 57 58
s=0.85 19 32 38 42 45 47 49 51 52 53
s=0.8 16 28 34 38 41 43 45 47 48 50

Table 4: Minimum number of vehicles to achieve different success rates at different hops for pene-
tration rate 10%
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Figure 2: Success rates v.s. transmission ranges: penetration rate = 10% and four-lane road with
density of 56 veh/km
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Figure 3: Success rates v.s. transmission ranges: penetration rate = 10% and four-lane road with
density of 20 veh/km
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Figure 4: An example of vehicle distribution in general traffic, in which the length of a cell is smaller
than R.
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Figure 5: Success rates v.s. vehicle number in a randomly distributed traffic stream.
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Figure 6: Success rates v.s. vehicle position in a randomly distributed traffic stream.
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Figure 7: Success rates of information propagation for different locations of information source with
a gap at [0, 0.4 km].
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Figure 8: Information progress with 90% success rate for different sizes of gaps.
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Figure 9: Success rates of information propagation at four instants.
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Figure 10: Information progress with 95% success rate in a shock wave.
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